elon_py/pkg/tool.py

127 lines
4.5 KiB
Python
Raw Normal View History

from datetime import datetime, timedelta
2025-03-05 10:24:46 +08:00
import pandas as pd
from pkg.config import render_data
import pytz
2025-03-05 10:24:46 +08:00
def aggregate_data(data, interval):
all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)})
result = []
2025-03-06 10:16:59 +08:00
if data.empty or 'date' not in data.columns:
complete_data = all_minutes.copy()
complete_data['tweet_count'] = 0
complete_data['date'] = datetime.now().date()
return complete_data
2025-03-05 10:24:46 +08:00
for date in data['date'].unique():
day_data = data[data['date'] == date].copy()
day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval
agg = day_data.groupby('interval_group').size().reset_index(name='tweet_count')
complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0})
complete_data['date'] = date
result.append(complete_data)
2025-03-06 10:16:59 +08:00
if not result:
complete_data = all_minutes.copy()
complete_data['tweet_count'] = 0
complete_data['date'] = data['date'].iloc[0] if not data.empty else datetime.now().date()
return complete_data
2025-03-05 10:24:46 +08:00
return pd.concat(result, ignore_index=True)
def generate_xticks(interval):
if interval <= 5:
tick_step = 60
elif interval <= 10:
tick_step = 60
elif interval <= 30:
tick_step = 120
else:
tick_step = 240
ticks = list(range(0, 1440, tick_step))
tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks]
return ticks, tick_labels
def minutes_to_time(minutes):
hours = minutes // 60
mins = minutes % 60
return f"{hours:02d}:{mins:02d}"
def get_tweets_since_last_friday():
est = pytz.timezone('US/Eastern')
now_est = datetime.now(est)
today = now_est.date()
2025-03-07 13:52:35 +08:00
days_since_friday = (today.weekday() - 4) % 7
this_friday = today - timedelta(days=days_since_friday)
this_friday_datetime = est.localize(datetime.combine(this_friday, datetime.strptime("12:00", "%H:%M").time()))
2025-03-07 13:52:35 +08:00
last_friday = this_friday - timedelta(days=7)
last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time()))
if now_est < this_friday_datetime:
start_datetime = last_friday_datetime
else:
start_datetime = this_friday_datetime
if hasattr(render_data, 'global_df') and not render_data.global_df.empty:
df = render_data.global_df.copy()
2025-03-07 13:52:35 +08:00
mask = df['datetime_est'] >= start_datetime
filtered_df = df[mask]
tweet_count = len(filtered_df)
return int(tweet_count)
2025-03-07 13:52:35 +08:00
return 0
2025-03-07 14:14:08 +08:00
def get_time_since_last_tweet():
est = pytz.timezone('US/Eastern')
now_est = datetime.now(est)
if (not hasattr(render_data, 'global_df') or
render_data.global_df is None or
render_data.global_df.empty):
return 0.0
df = render_data.global_df
if 'datetime_est' not in df.columns:
return 0.0
latest_tweet_time = df['datetime_est'].max()
time_diff = now_est - latest_tweet_time
days_diff = time_diff.total_seconds() / (24 * 60 * 60) # 转换为天数
return days_diff
2025-03-07 13:52:35 +08:00
def format_time_str(days_to_next_friday):
total_seconds = days_to_next_friday * 24 * 60 * 60
days = int(total_seconds // (24 * 60 * 60))
hours = int((total_seconds % (24 * 60 * 60)) // (60 * 60))
minutes = int((total_seconds % (60 * 60)) // 60)
seconds = int(total_seconds % 60)
total_hours = round(days_to_next_friday * 24, 2)
2025-03-12 17:40:20 +08:00
return f"{days}d {hours:02d}h {minutes:02d}m {seconds:02d}s ({total_hours}h)"
def get_hourly_weighted_array():
est = pytz.timezone('US/Eastern')
now = datetime.now(est).date()
last_7_days = [now - timedelta(days=i) for i in range(7)]
multi_data_agg = render_data.global_agg_df[
render_data.global_agg_df['date'].isin(last_7_days)].copy()
if multi_data_agg.empty:
return [1 / 24] * 24
agg_data = aggregate_data(multi_data_agg, 60)
one_day_data = agg_data.groupby('interval_group')['tweet_count'].sum().reset_index()
tweet_count_total = one_day_data['tweet_count'].sum()
hourly_rates = [0] * 24
for _, row in one_day_data.iterrows():
minute = row['interval_group']
hour = int(minute // 60)
if hour < 24:
hourly_rates[hour] = row['tweet_count'] / tweet_count_total if tweet_count_total > 0 else 0
total_rate = sum(hourly_rates)
if total_rate > 0:
hourly_rates = [rate / total_rate for rate in hourly_rates]
else:
hourly_rates = [1 / 24] * 24
return hourly_rates