elon_py/pkg/dash/func/info_test.py

207 lines
9.6 KiB
Python
Raw Normal View History

2025-03-14 15:27:11 +08:00
from pkg.dash.func.info_func import *
from pkg.dash.app_init import app
from dash.dependencies import Input, Output
from dash import html
2025-03-14 17:55:31 +08:00
import os
import csv
2025-03-14 15:27:11 +08:00
import pandas as pd
2025-03-14 15:55:44 +08:00
import re
2025-03-14 15:27:11 +08:00
from datetime import timedelta
@app.callback(
[Output('test-info-tooltip', 'children')],
[Input('test-button', 'n_clicks'),
Input('test-date-input', 'date'),
Input('test-time-input', 'value')]
)
def update_test_info(n_clicks, test_date, test_time):
if n_clicks == 0:
return [html.Div("Click 'Test' to see historical probability results.")]
est = pytz.timezone('US/Eastern')
2025-03-14 15:55:44 +08:00
data = render_data.global_agg_df.copy()
# 调试:打印输入值
print(f"test_date: {test_date}, test_time: {test_time}")
# 检查输入是否为空
if not test_date or not test_time:
return [html.Div("Date or time input is empty. Please provide both date (YYYY-MM-DD) and time (HH:MM:SS).")]
# 验证时间格式
time_pattern = r'^(?:[01]\d|2[0-3]):[0-5]\d:[0-5]\d$' # HH:MM:SS (00:00:00 to 23:59:59)
if not re.match(time_pattern, test_time):
return [html.Div("Invalid time format. Use HH:MM:SS (e.g., 12:00:00) with hours 00-23, minutes 00-59, seconds 00-59.")]
# 重构 datetime_est处理夏令时模糊时间
data['hours'] = data['minute_of_day'] // 60
data['minutes'] = data['minute_of_day'] % 60
data['datetime_est'] = pd.to_datetime(
data['date'].astype(str) + ' ' +
data['hours'].astype(str) + ':' +
data['minutes'].astype(str) + ':00',
errors='coerce'
).dt.tz_localize(est, ambiguous='NaT')
if data['datetime_est'].isna().any():
print("Warning: Some datetime_est values are NaT due to ambiguous time handling")
2025-03-14 15:27:11 +08:00
# 解析测试日期和时间
try:
2025-03-14 15:55:44 +08:00
test_date = pd.to_datetime(test_date, format='%Y-%m-%d').date()
test_datetime = pd.to_datetime(f"{test_date} {test_time}", format='%Y-%m-%d %H:%M:%S').tz_localize(est, ambiguous=True)
except ValueError as e:
print(f"Error parsing date/time: {e}")
2025-03-14 15:27:11 +08:00
return [html.Div("Invalid date or time format. Use YYYY-MM-DD and HH:MM:SS (e.g., 12:00:00).")]
2025-03-14 16:37:50 +08:00
# 计算周期开始时间(上一个或当前周五 12:00 PM
test_day_of_week = test_datetime.weekday() # 0 = Monday, 4 = Friday
test_hour = test_datetime.hour
days_since_last_friday = (test_day_of_week - 4) % 7 # 4 表示周五
if test_hour < 12 and test_day_of_week == 4: # Before 12 PM on Friday
cycle_start = test_datetime - timedelta(days=days_since_last_friday + 7) # Previous Friday
else:
cycle_start = test_datetime - timedelta(days=days_since_last_friday) # Current or next Friday
2025-03-14 16:22:00 +08:00
cycle_start = cycle_start.replace(hour=12, minute=0, second=0, microsecond=0)
2025-03-14 15:55:44 +08:00
# 确保周期结束时间(下周五 12:00 PM EDT考虑夏令时
cycle_end = cycle_start + timedelta(days=7)
2025-03-14 16:22:00 +08:00
# 精确计算夏令时开始2025年3月9日第二个星期日
first_day = cycle_end.replace(day=1)
second_sunday = first_day + timedelta(days=((6 - first_day.weekday()) % 7) + 7)
if cycle_end.month == 3 and cycle_end >= second_sunday.replace(hour=2):
cycle_end = cycle_end.tz_convert(est) # EDT
2025-03-14 15:55:44 +08:00
else:
2025-03-14 16:22:00 +08:00
cycle_end = cycle_end.tz_convert(est) # EST 或 EDT
2025-03-14 15:55:44 +08:00
# 调试:打印周期信息
print(f"Cycle Start: {cycle_start}, Cycle End: {cycle_end}")
2025-03-14 16:37:50 +08:00
# 过滤周期内的数据(从周期开始到测试时间)
2025-03-14 15:55:44 +08:00
cycle_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= test_datetime)]
if cycle_data.empty:
return [html.Div(f"No data available in cycle from {cycle_start} to {test_datetime}")]
tweet_count = cycle_data['tweet_count'].sum()
# 计算实际最终推文数(周期结束时的总数)
actual_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= cycle_end)]
2025-03-14 15:27:11 +08:00
if actual_data.empty:
2025-03-14 15:55:44 +08:00
return [html.Div(f"No data available for cycle ending {cycle_end}")]
2025-03-14 15:27:11 +08:00
actual_end_count = actual_data['tweet_count'].sum()
2025-03-14 15:55:44 +08:00
# 计算 days_to_next_friday从 test_datetime 到周期结束)
days_to_next_friday = (cycle_end - test_datetime).total_seconds() / (24 * 60 * 60)
2025-03-14 15:27:11 +08:00
2025-03-14 15:55:44 +08:00
# 设置预测范围
prob_start = actual_end_count * 0.9
prob_end = actual_end_count * 1.1
2025-03-14 15:27:11 +08:00
2025-03-14 15:55:44 +08:00
# 计算概率
2025-03-14 15:27:11 +08:00
probability = calculate_tweet_probability(tweet_count, days_to_next_friday, prob_start, prob_end)
prob_min, prob_max = map(float, probability.split(" - "))
formatted_probability = f"{prob_min * 100:.2f}% - {prob_max * 100:.2f}%"
2025-03-14 16:22:00 +08:00
# 构建测试结果表格(包含 Cycle End
2025-03-14 15:27:11 +08:00
test_table_rows = [
2025-03-14 16:37:50 +08:00
html.Tr([html.Th("Cycle Start:", colSpan=4), html.Td(str(cycle_start), colSpan=6)]),
html.Tr([html.Th("Test Date and Time:", colSpan=4), html.Td(str(test_datetime), colSpan=6)]),
html.Tr([html.Th("Cycle End:", colSpan=4), html.Td(str(cycle_end), colSpan=6)]),
html.Tr([html.Th("Tweet Count at Test Time:", colSpan=4), html.Td(str(tweet_count), colSpan=6)]),
html.Tr([html.Th("Actual Final Tweet Count:", colSpan=4), html.Td(str(actual_end_count), colSpan=6)]),
html.Tr([html.Th(f"Predicted Range ({int(prob_start)}-{int(prob_end)}):", colSpan=4), html.Td(formatted_probability, colSpan=6)]),
html.Tr([html.Th("Does Actual Fall in Range?", colSpan=4),
2025-03-14 15:55:44 +08:00
html.Td("Yes" if prob_start <= actual_end_count <= prob_end else "No",
colSpan=6, style={'color': 'green' if prob_start <= actual_end_count <= prob_end else 'red'})])
2025-03-14 15:27:11 +08:00
]
if prob_start <= actual_end_count <= prob_end:
expected_prob = (prob_max + prob_min) / 2
2025-03-14 16:37:50 +08:00
test_table_rows.append(html.Tr([html.Th("Expected Probability:", colSpan=4),
2025-03-14 15:55:44 +08:00
html.Td(f"~{expected_prob * 100:.2f}% (should be high if model fits)", colSpan=6)]))
2025-03-14 15:27:11 +08:00
else:
2025-03-14 16:37:50 +08:00
test_table_rows.append(html.Tr([html.Th("Note:", colSpan=4),
2025-03-14 15:55:44 +08:00
html.Td("Model prediction does not match actual outcome.", colSpan=6, style={'color': 'red'})]))
test_table = html.Table(test_table_rows, style={'width': '100%', 'textAlign': 'left', 'borderCollapse': 'collapse'})
2025-03-14 17:55:31 +08:00
return [test_table]
def run_loop_test(start_date="2024-10-01", end_date="2025-03-12", interval_hours=1, output_file="test_results.csv"):
est = pytz.timezone('US/Eastern')
# 生成测试时间序列
start_dt = pd.to_datetime(start_date).tz_localize(est)
end_dt = pd.to_datetime(end_date).tz_localize(est)
time_points = []
current_dt = start_dt
while current_dt <= end_dt:
time_points.append(current_dt)
current_dt += timedelta(hours=interval_hours)
# 准备 CSV 文件
headers = [
"Test Date", "Test Time", "Cycle Start", "Cycle End", "Tweet Count at Test Time",
"Actual Final Tweet Count", "Predicted Range Start", "Predicted Range End",
"Probability Min (%)", "Probability Max (%)", "Actual in Range", "Expected Probability (%)", "Note"
]
# 如果文件不存在,写入表头
if not os.path.exists(output_file):
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(headers)
# 循环测试
for test_datetime in time_points:
test_date = test_datetime.date().strftime('%Y-%m-%d')
test_time = test_datetime.time().strftime('%H:%M:%S')
n_clicks = 1 # 假设已点击
# 调用原始函数
result = update_test_info(n_clicks, test_date, test_time)
# 解析结果
if isinstance(result[0], html.Table):
table = result[0]
rows = table.children
# 提取数据
cycle_start = str(rows[0].children[1].children)
test_dt = str(rows[1].children[1].children)
cycle_end = str(rows[2].children[1].children)
tweet_count = int(rows[3].children[1].children)
actual_end_count = int(rows[4].children[1].children)
prob_range = rows[5].children[1].children # 例如 "2.74% - 3.25%"
# 移除 % 符号并转换为浮点数
prob_min, prob_max = [float(x.strip('%')) for x in prob_range.split(" - ")]
# 从表头提取预测范围
prob_start, prob_end = map(int, rows[5].children[0].children.split("(")[1].split(")")[0].split("-"))
in_range = rows[6].children[1].children == "Yes"
# 检查是否有 Expected Probability 或 Note
expected_prob = None
note = ""
if len(rows) > 7:
if "Expected" in rows[7].children[0].children:
expected_prob = float(rows[7].children[1].children.split()[0][1:-1]) # 移除 "~" 和 "%"
elif "Note" in rows[7].children[0].children:
note = rows[7].children[1].children
# 写入 CSV
with open(output_file, 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([
test_date, test_time, cycle_start, cycle_end, tweet_count,
actual_end_count, prob_start, prob_end, prob_min, prob_max,
"Yes" if in_range else "No", expected_prob if expected_prob is not None else "", note
])
else:
# 如果返回错误信息,也记录
with open(output_file, 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([test_date, test_time, "", "", "", "", "", "", "", "", "", "", result[0].children])
print(f"Processed: {test_date} {test_time}")
# 运行测试
if __name__ == "__main__":
run_loop_test(start_date="2024-10-01", end_date="2025-03-12", interval_hours=1, output_file="test_results.csv")