elon_py/pkg/tool.py

49 lines
1.6 KiB
Python
Raw Normal View History

2025-03-06 10:16:59 +08:00
from datetime import datetime
2025-03-05 10:24:46 +08:00
import pandas as pd
def aggregate_data(data, interval):
all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)})
result = []
2025-03-06 10:16:59 +08:00
if data.empty or 'date' not in data.columns:
complete_data = all_minutes.copy()
complete_data['tweet_count'] = 0
complete_data['date'] = datetime.now().date()
return complete_data
2025-03-05 10:24:46 +08:00
for date in data['date'].unique():
day_data = data[data['date'] == date].copy()
day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval
agg = day_data.groupby('interval_group').size().reset_index(name='tweet_count')
complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0})
complete_data['date'] = date
result.append(complete_data)
2025-03-06 10:16:59 +08:00
if not result:
complete_data = all_minutes.copy()
complete_data['tweet_count'] = 0
complete_data['date'] = data['date'].iloc[0] if not data.empty else datetime.now().date()
return complete_data
2025-03-05 10:24:46 +08:00
return pd.concat(result, ignore_index=True)
def generate_xticks(interval):
if interval <= 5:
tick_step = 60
elif interval <= 10:
tick_step = 60
elif interval <= 30:
tick_step = 120
else:
tick_step = 240
ticks = list(range(0, 1440, tick_step))
tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks]
return ticks, tick_labels
def minutes_to_time(minutes):
hours = minutes // 60
mins = minutes % 60
return f"{hours:02d}:{mins:02d}"