-line chart
-Probability
This commit is contained in:
parent
abf820fe08
commit
681f501c1c
@ -2,6 +2,7 @@ from datetime import timedelta, datetime
|
||||
from dash import dcc, html
|
||||
from pkg.config import interval_options, days_options, render_data
|
||||
|
||||
|
||||
def layout_config(app):
|
||||
app.layout = html.Div([
|
||||
html.Div(
|
||||
@ -112,27 +113,16 @@ def layout_config(app):
|
||||
'zIndex': 1000
|
||||
}
|
||||
),
|
||||
# Main content
|
||||
html.Div([
|
||||
html.H1("Elon Musk Tweet Time Analysis (EST)"),
|
||||
html.Div(id='date-picker-container', children=[
|
||||
dcc.Dropdown(
|
||||
id='multi-date-picker',
|
||||
options=[{'label': str(date), 'value': str(date)} for date in render_data.all_dates],
|
||||
value=render_data.default_date,
|
||||
multi=True,
|
||||
searchable=True,
|
||||
placeholder="Search and select dates (YYYY-MM-DD)",
|
||||
style={'width': '100%'}
|
||||
)
|
||||
]),
|
||||
html.Div(id='multi-interval-container', children=[
|
||||
dcc.Dropdown(
|
||||
id='multi-interval-picker',
|
||||
options=interval_options,
|
||||
value=10,
|
||||
style={'width': '50%', 'marginTop': '10px'}
|
||||
),
|
||||
html.Div(id='days-display-container', style={'display': 'none'}, children=[
|
||||
)
|
||||
]),
|
||||
html.Div(id='days-display-container', children=[
|
||||
dcc.Dropdown(
|
||||
id='days-display-picker',
|
||||
options=days_options,
|
||||
@ -141,18 +131,8 @@ def layout_config(app):
|
||||
)
|
||||
]),
|
||||
html.Div(id='multi-day-warning', style={'color': 'red', 'margin': '10px'}),
|
||||
dcc.Checklist(
|
||||
id='time-zone-checklist',
|
||||
options=[
|
||||
{'label': 'California Time (PST)', 'value': 'PST'},
|
||||
{'label': 'Texas Time (CST)', 'value': 'CST'}
|
||||
],
|
||||
value=['PST'],
|
||||
style={'margin': '10px'}
|
||||
),
|
||||
html.Div(id='multi-tweet-summary', style={'fontSize': '20px', 'margin': '10px'}),
|
||||
dcc.Tabs(id='tabs', value='line', children=[
|
||||
dcc.Tab(label='Line', value='line'),
|
||||
dcc.Tabs(id='tabs', value='heatmap', children=[
|
||||
dcc.Tab(label='Heatmap', value='heatmap'),
|
||||
dcc.Tab(label='Heatmap(1-day)', value='one_day_heatmap'),
|
||||
]),
|
||||
@ -193,83 +173,7 @@ def layout_config(app):
|
||||
style={'width': '100%'}
|
||||
)
|
||||
)
|
||||
]),
|
||||
html.Tr([
|
||||
html.Td("Predict Tweets Start:", style={'paddingRight': '10px'}),
|
||||
html.Td(
|
||||
dcc.Input(
|
||||
id='prob-start-input',
|
||||
type='number',
|
||||
placeholder='输入 Probability Start 值',
|
||||
value=525,
|
||||
style={'width': '100%'}
|
||||
)
|
||||
)
|
||||
]),
|
||||
html.Tr([
|
||||
html.Td("Predict Tweets End:", style={'paddingRight': '10px'}),
|
||||
html.Td(
|
||||
dcc.Input(
|
||||
id='prob-end-input',
|
||||
type='number',
|
||||
placeholder='输入 Probability End 值',
|
||||
value=549,
|
||||
style={'width': '100%'}
|
||||
)
|
||||
)
|
||||
]),
|
||||
html.Tr([
|
||||
html.Td("Calculate Probability:", style={'paddingRight': '10px'}),
|
||||
html.Td(
|
||||
html.Button('Calculate', id='update-button', n_clicks=0)
|
||||
)
|
||||
]),
|
||||
html.Tr(id='manual-info-tooltip', style={'margin': '10px'})
|
||||
], style={
|
||||
'width': '50%',
|
||||
'marginTop': '10px',
|
||||
'borderCollapse': 'collapse'
|
||||
}),
|
||||
# 新增测试区域
|
||||
html.H2("Historical Probability Test", style={'marginTop': '20px'}),
|
||||
html.Table([
|
||||
html.Tr([
|
||||
html.Td("Test Date:", style={'paddingRight': '10px'}),
|
||||
html.Td(
|
||||
dcc.DatePickerSingle(
|
||||
id='test-date-input',
|
||||
date=(datetime.now().date() - timedelta(days=1)).strftime('%Y-%m-%d'), # 默认昨天
|
||||
display_format='YYYY-MM-DD',
|
||||
style={'width': '100%'}
|
||||
)
|
||||
)
|
||||
]),
|
||||
html.Tr([
|
||||
html.Td("Test Time:", style={'paddingRight': '10px'}),
|
||||
html.Td(
|
||||
html.Div([
|
||||
dcc.Input(
|
||||
id='test-time-input',
|
||||
type='text',
|
||||
placeholder='HH:MM:SS (e.g., 12:00:00)', # 增强提示
|
||||
value='12:00:00',
|
||||
pattern='[0-2][0-9]:[0-5][0-9]:[0-5][0-9]', # 限制格式
|
||||
style={'width': '100%'}
|
||||
),
|
||||
html.Span(
|
||||
"Enter time in HH:MM:SS format (e.g., 12:00:00)",
|
||||
style={'fontSize': '12px', 'color': 'gray', 'marginTop': '5px', 'display': 'block'}
|
||||
)
|
||||
])
|
||||
)
|
||||
]),
|
||||
html.Tr([
|
||||
html.Td("Test Probability:", style={'paddingRight': '10px'}),
|
||||
html.Td(
|
||||
html.Button('Test', id='test-button', n_clicks=0)
|
||||
)
|
||||
]),
|
||||
html.Tr(id='test-info-tooltip', style={'margin': '10px'})
|
||||
], style={
|
||||
'width': '50%',
|
||||
'marginTop': '10px',
|
||||
|
@ -1,37 +0,0 @@
|
||||
from pkg.dash.func.info_func import *
|
||||
from pkg.dash.app_init import app
|
||||
from dash.dependencies import Input, Output
|
||||
from dash import html
|
||||
|
||||
@app.callback(
|
||||
[Output('manual-info-tooltip', 'children')],
|
||||
[Input('update-button', 'n_clicks'),
|
||||
Input('prob-start-input', 'value'),
|
||||
Input('prob-end-input', 'value')]
|
||||
)
|
||||
def update_info_manual(n_clicks, prob_start, prob_end):
|
||||
if n_clicks == 0:
|
||||
return [html.Div("Click 'Manual Update' to see results.")]
|
||||
|
||||
tweet_count, days_to_next_friday = get_pace_params()
|
||||
prob_start = int(prob_start) if prob_start is not None else 525
|
||||
prob_end = int(prob_end) if prob_end is not None else 549
|
||||
|
||||
probability = calculate_tweet_probability(tweet_count, days_to_next_friday, prob_start, prob_end)
|
||||
|
||||
prob_low, prob_high = map(float, probability.split(" - "))
|
||||
formatted_probability = f"{prob_low * 100:.2f}% - {prob_high * 100:.2f}%"
|
||||
|
||||
pace_table_rows = [
|
||||
html.Tr([
|
||||
html.Th(f"Probability ({prob_start}-{prob_end})", colSpan=2, style={'paddingRight': '10px'}),
|
||||
html.Td(formatted_probability, colSpan=6, style={'paddingRight': '10px'})
|
||||
])
|
||||
]
|
||||
pace_table = html.Table(pace_table_rows, style={
|
||||
'width': '100%',
|
||||
'textAlign': 'left',
|
||||
'borderCollapse': 'collapse'
|
||||
})
|
||||
return [pace_table]
|
||||
|
@ -1,219 +0,0 @@
|
||||
from pkg.dash.func.info_func import *
|
||||
from pkg.dash.app_init import app
|
||||
from dash.dependencies import Input, Output
|
||||
from dash import html
|
||||
import os
|
||||
import csv
|
||||
import pandas as pd
|
||||
import re
|
||||
from datetime import timedelta
|
||||
from tqdm import tqdm
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
import multiprocessing as mp
|
||||
|
||||
# 全局数据,避免重复加载
|
||||
global_data = None
|
||||
|
||||
def initialize_global_data():
|
||||
global global_data
|
||||
if global_data is None:
|
||||
global_data = render_data.global_agg_df.copy()
|
||||
# 预计算常用列,避免重复操作
|
||||
global_data['hours'] = global_data['minute_of_day'] // 60
|
||||
global_data['minutes'] = global_data['minute_of_day'] % 60
|
||||
global_data['datetime_est'] = pd.to_datetime(
|
||||
global_data['date'].astype(str) + ' ' +
|
||||
global_data['hours'].astype(str) + ':' +
|
||||
global_data['minutes'].astype(str) + ':00',
|
||||
errors='coerce'
|
||||
).dt.tz_localize('US/Eastern', ambiguous='NaT')
|
||||
|
||||
@app.callback(
|
||||
[Output('test-info-tooltip', 'children')],
|
||||
[Input('test-button', 'n_clicks'),
|
||||
Input('test-date-input', 'date'),
|
||||
Input('test-time-input', 'value')]
|
||||
)
|
||||
def update_test_info(n_clicks, test_date, test_time, data=None):
|
||||
if n_clicks == 0:
|
||||
return [html.Div("Click 'Test' to see historical probability results.")]
|
||||
|
||||
est = pytz.timezone('US/Eastern')
|
||||
data = data if data is not None else render_data.global_agg_df.copy()
|
||||
|
||||
if not test_date or not test_time:
|
||||
return [html.Div("Date or time input is empty. Please provide both date (YYYY-MM-DD) and time (HH:MM:SS).")]
|
||||
|
||||
time_pattern = r'^(?:[01]\d|2[0-3]):[0-5]\d:[0-5]\d$'
|
||||
if not re.match(time_pattern, test_time):
|
||||
return [html.Div("Invalid time format. Use HH:MM:SS (e.g., 12:00:00).")]
|
||||
|
||||
try:
|
||||
test_datetime = pd.to_datetime(f"{test_date} {test_time}", format='%Y-%m-%d %H:%M:%S').tz_localize(est, ambiguous=True)
|
||||
except ValueError:
|
||||
return [html.Div("Invalid date or time format. Use YYYY-MM-DD and HH:MM:SS (e.g., 12:00:00).")]
|
||||
|
||||
test_day_of_week = test_datetime.weekday()
|
||||
test_hour = test_datetime.hour
|
||||
days_since_last_friday = (test_day_of_week - 4) % 7
|
||||
if test_hour < 12 and test_day_of_week == 4:
|
||||
cycle_start = test_datetime - timedelta(days=days_since_last_friday + 7)
|
||||
else:
|
||||
cycle_start = test_datetime - timedelta(days=days_since_last_friday)
|
||||
cycle_start = cycle_start.replace(hour=12, minute=0, second=0, microsecond=0)
|
||||
|
||||
cycle_end = cycle_start + timedelta(days=7)
|
||||
first_day = cycle_end.replace(day=1)
|
||||
second_sunday = first_day + timedelta(days=((6 - first_day.weekday()) % 7) + 7)
|
||||
if cycle_end.month == 3 and cycle_end >= second_sunday.replace(hour=2):
|
||||
cycle_end = cycle_end.tz_convert(est)
|
||||
else:
|
||||
cycle_end = cycle_end.tz_convert(est)
|
||||
|
||||
days_to_next_friday = (cycle_end - test_datetime).total_seconds() / (24 * 60 * 60)
|
||||
if days_to_next_friday <= 0:
|
||||
return [html.Div(f"Test time {test_datetime} is at or past cycle end {cycle_end}.")]
|
||||
|
||||
cycle_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= test_datetime)]
|
||||
if cycle_data.empty:
|
||||
return [html.Div(f"No data available from {cycle_start} to {test_datetime}")]
|
||||
|
||||
tweet_count = cycle_data['tweet_count'].sum()
|
||||
|
||||
actual_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= cycle_end)]
|
||||
if actual_data.empty:
|
||||
return [html.Div(f"No data available for cycle ending {cycle_end}")]
|
||||
actual_end_count = actual_data['tweet_count'].sum()
|
||||
|
||||
days_elapsed = (test_datetime - cycle_start).total_seconds() / (24 * 60 * 60)
|
||||
if days_elapsed <= 0:
|
||||
return [html.Div(f"Test time {test_datetime} is before cycle start {cycle_start}.")]
|
||||
|
||||
daily_avg = tweet_count / days_elapsed
|
||||
predicted_end_count = daily_avg * 7
|
||||
prob_start = predicted_end_count * 0.9
|
||||
prob_end = predicted_end_count * 1.1
|
||||
|
||||
try:
|
||||
probability = calculate_tweet_probability(tweet_count, days_to_next_friday, prob_start, prob_end)
|
||||
prob_min, prob_max = map(float, probability.split(" - "))
|
||||
formatted_probability = f"{prob_min * 100:.2f}% - {prob_max * 100:.2f}%"
|
||||
except Exception as e:
|
||||
return [html.Div(f"Error calculating probability: {str(e)}")]
|
||||
|
||||
test_table_rows = [
|
||||
html.Tr([html.Th("Cycle Start:", colSpan=4), html.Td(str(cycle_start), colSpan=6)]),
|
||||
html.Tr([html.Th("Test Date and Time:", colSpan=4), html.Td(str(test_datetime), colSpan=6)]),
|
||||
html.Tr([html.Th("Cycle End:", colSpan=4), html.Td(str(cycle_end), colSpan=6)]),
|
||||
html.Tr([html.Th("Tweet Count at Test Time:", colSpan=4), html.Td(str(tweet_count), colSpan=6)]),
|
||||
html.Tr([html.Th("Actual Final Tweet Count:", colSpan=4), html.Td(str(actual_end_count), colSpan=6)]),
|
||||
html.Tr([html.Th(f"Predicted Range ({int(prob_start)}-{int(prob_end)}):", colSpan=4), html.Td(formatted_probability, colSpan=6)]),
|
||||
html.Tr([html.Th("Does Actual Fall in Range?", colSpan=4),
|
||||
html.Td("Yes" if prob_start <= actual_end_count <= prob_end else "No",
|
||||
colSpan=6, style={'color': 'green' if prob_start <= actual_end_count <= prob_end else 'red'})])
|
||||
]
|
||||
if prob_start <= actual_end_count <= prob_end:
|
||||
expected_prob = (prob_max + prob_min) / 2
|
||||
test_table_rows.append(html.Tr([html.Th("Expected Probability:", colSpan=4),
|
||||
html.Td(f"~{expected_prob * 100:.2f}%", colSpan=6)]))
|
||||
else:
|
||||
test_table_rows.append(html.Tr([html.Th("Note:", colSpan=4),
|
||||
html.Td("Prediction does not match actual outcome.", colSpan=6, style={'color': 'red'})]))
|
||||
|
||||
test_table = html.Table(test_table_rows, style={'width': '100%', 'textAlign': 'left', 'borderCollapse': 'collapse'})
|
||||
return [test_table]
|
||||
|
||||
|
||||
def process_test_case(args):
|
||||
test_datetime, data = args
|
||||
test_date = test_datetime.date().strftime('%Y-%m-%d')
|
||||
test_time = test_datetime.time().strftime('%H:%M:%S')
|
||||
n_clicks = 1
|
||||
|
||||
result = update_test_info(n_clicks, test_date, test_time, data)
|
||||
|
||||
if isinstance(result[0], html.Table):
|
||||
table = result[0]
|
||||
rows = table.children
|
||||
|
||||
cycle_start = str(rows[0].children[1].children)
|
||||
test_dt = str(rows[1].children[1].children)
|
||||
cycle_end = str(rows[2].children[1].children)
|
||||
tweet_count = int(rows[3].children[1].children)
|
||||
actual_end_count = int(rows[4].children[1].children)
|
||||
prob_range = rows[5].children[1].children
|
||||
prob_min, prob_max = [float(x.strip('%')) for x in prob_range.split(" - ")]
|
||||
prob_start, prob_end = map(int, rows[5].children[0].children.split("(")[1].split(")")[0].split("-"))
|
||||
in_range = rows[6].children[1].children == "Yes"
|
||||
expected_prob = None
|
||||
note = ""
|
||||
if len(rows) > 7:
|
||||
if "Expected" in rows[7].children[0].children:
|
||||
expected_prob = float(rows[7].children[1].children.split()[0][1:-1])
|
||||
elif "Note" in rows[7].children[0].children:
|
||||
note = rows[7].children[1].children
|
||||
|
||||
return [
|
||||
test_date, test_time, cycle_start, cycle_end, tweet_count,
|
||||
actual_end_count, prob_start, prob_end, prob_min, prob_max,
|
||||
"Yes" if in_range else "No", expected_prob if expected_prob is not None else "", note
|
||||
]
|
||||
else:
|
||||
return [test_date, test_time, "", "", "", "", "", "", "", "", "", "", result[0].children]
|
||||
|
||||
|
||||
def run_loop_test(start_date="2024-10-01", end_date="2025-03-12", interval_hours=1, output_file="test_results.csv", max_workers=None, chunk_size=1000):
|
||||
est = pytz.timezone('US/Eastern')
|
||||
start_dt = pd.to_datetime(start_date).tz_localize(est)
|
||||
end_dt = pd.to_datetime(end_date).tz_localize(est)
|
||||
time_points = []
|
||||
current_dt = start_dt
|
||||
while current_dt <= end_dt:
|
||||
time_points.append(current_dt)
|
||||
current_dt += timedelta(hours=interval_hours)
|
||||
|
||||
headers = [
|
||||
"Test Date", "Test Time", "Cycle Start", "Cycle End", "Tweet Count at Test Time",
|
||||
"Actual Final Tweet Count", "Predicted Range Start", "Predicted Range End",
|
||||
"Probability Min (%)", "Probability Max (%)", "Actual in Range", "Expected Probability (%)", "Note"
|
||||
]
|
||||
|
||||
if not os.path.exists(output_file):
|
||||
with open(output_file, 'w', newline='') as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerow(headers)
|
||||
|
||||
# 预加载数据
|
||||
initialize_global_data()
|
||||
data = global_data
|
||||
|
||||
total_steps = len(time_points)
|
||||
max_workers = max_workers or os.cpu_count() or 4
|
||||
chunk_size = min(chunk_size, total_steps) # 确保 chunk_size 不超过总任务数
|
||||
|
||||
# 分块处理时间点
|
||||
chunks = [time_points[i:i + chunk_size] for i in range(0, total_steps, chunk_size)]
|
||||
|
||||
with tqdm(total=total_steps, desc="Processing Test Cases", unit="step") as pbar:
|
||||
for chunk in chunks:
|
||||
results = []
|
||||
with ProcessPoolExecutor(max_workers=max_workers) as executor:
|
||||
futures = {executor.submit(process_test_case, (test_datetime, data)): test_datetime for test_datetime in chunk}
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
result = future.result()
|
||||
results.append(result)
|
||||
pbar.update(1)
|
||||
except Exception as e:
|
||||
test_datetime = futures[future]
|
||||
results.append([test_datetime.date().strftime('%Y-%m-%d'),
|
||||
test_datetime.time().strftime('%H:%M:%S'),
|
||||
"", "", "", "", "", "", "", "", "", "", f"Error: {str(e)}"])
|
||||
pbar.update(1)
|
||||
|
||||
with open(output_file, 'a', newline='') as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerows(results)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_loop_test(start_date="2024-10-01", end_date="2025-03-12", interval_hours=1, output_file="test_results.csv", chunk_size=1000)
|
@ -2,33 +2,21 @@ from datetime import datetime, timedelta
|
||||
from dash.dependencies import Input, Output
|
||||
from pkg.dash.app_init import app
|
||||
from pkg.config import render_data
|
||||
from pkg.tool import aggregate_data, generate_xticks, minutes_to_time, get_tweets_since_last_friday
|
||||
from pkg.tool import aggregate_data, minutes_to_time, get_tweets_since_last_friday
|
||||
from dash import dcc
|
||||
import plotly.graph_objs as go
|
||||
import pandas as pd
|
||||
|
||||
|
||||
@app.callback(
|
||||
[Output('tabs-content', 'children'),
|
||||
Output('multi-day-warning', 'children'),
|
||||
Output('multi-tweet-summary', 'children')],
|
||||
[Input('tabs', 'value'),
|
||||
Input('multi-date-picker', 'value'),
|
||||
Input('multi-interval-picker', 'value'),
|
||||
Input('time-zone-checklist', 'value'),
|
||||
Input('days-display-picker', 'value')]
|
||||
)
|
||||
def render_tab_content(tab, selected_dates, interval, time_zones, days_to_display):
|
||||
def render_tab_content(tab, interval, days_to_display):
|
||||
warning = ""
|
||||
if tab == 'line':
|
||||
if not selected_dates: # Handle None or empty list
|
||||
selected_dates = [datetime.now().date()] # Default to today
|
||||
warning = "No dates selected. Showing today’s data."
|
||||
if len(selected_dates) > 10:
|
||||
selected_dates = selected_dates[:10]
|
||||
warning = "Maximum of 10 days can be selected. Showing first 10 selected days."
|
||||
selected_dates = [datetime.strptime(date, '%Y-%m-%d').date() for date in selected_dates]
|
||||
else:
|
||||
available_dates = sorted(render_data.global_agg_df['date'].unique(), reverse=True)
|
||||
selected_dates = available_dates[:days_to_display] if available_dates else [datetime.now().date()]
|
||||
if not available_dates:
|
||||
@ -47,23 +35,8 @@ def render_tab_content(tab, selected_dates, interval, time_zones, days_to_displa
|
||||
tweet_count_total = 0
|
||||
|
||||
agg_data = aggregate_data(multi_data_agg, interval)
|
||||
xticks, xtick_labels = generate_xticks(interval)
|
||||
|
||||
if tab == 'line':
|
||||
fig = go.Figure()
|
||||
for date in selected_dates:
|
||||
day_data = agg_data[agg_data['date'] == date]
|
||||
hover_times = [f"{date} {minutes_to_time(minute)} EST" for minute in day_data['interval_group']]
|
||||
fig.add_trace(go.Scatter(
|
||||
x=day_data['interval_group'],
|
||||
y=day_data['tweet_count'],
|
||||
mode='lines',
|
||||
name=str(date),
|
||||
customdata=hover_times,
|
||||
hovertemplate='%{customdata}<br>Tweets: %{y}<extra></extra>'
|
||||
))
|
||||
|
||||
elif tab == 'heatmap':
|
||||
if tab == 'heatmap':
|
||||
pivot_data = agg_data.pivot(index='date', columns='interval_group', values='tweet_count').fillna(0)
|
||||
pivot_data.index = pivot_data.index.astype(str)
|
||||
fig = go.Figure(data=go.Heatmap(
|
||||
@ -77,7 +50,7 @@ def render_tab_content(tab, selected_dates, interval, time_zones, days_to_displa
|
||||
|
||||
for i, date_str in enumerate(pivot_data.index):
|
||||
date = datetime.strptime(date_str, '%Y-%m-%d').date()
|
||||
if date.weekday() == 4: # Friday
|
||||
if date.weekday() == 4:
|
||||
prev_date = date - timedelta(days=1)
|
||||
if str(prev_date) in pivot_data.index:
|
||||
y_position = i / len(pivot_data.index)
|
||||
@ -105,8 +78,8 @@ def render_tab_content(tab, selected_dates, interval, time_zones, days_to_displa
|
||||
|
||||
for _, row in one_day_data.iterrows():
|
||||
minute = row['interval_group']
|
||||
hour = int(minute // 60) # Convert to integer
|
||||
interval_idx = int((minute % 60) // interval) # Convert to integer
|
||||
hour = int(minute // 60)
|
||||
interval_idx = int((minute % 60) // interval)
|
||||
if hour < 24:
|
||||
z_values[hour][interval_idx] = row['tweet_count']
|
||||
|
||||
@ -126,20 +99,12 @@ def render_tab_content(tab, selected_dates, interval, time_zones, days_to_displa
|
||||
hovertemplate='%{y}:%{x} EST<br>Tweets: %{z}<br>Rate: %{customdata:.2%}<extra></extra>'
|
||||
))
|
||||
|
||||
if tab in ['line', 'one_day_heatmap']:
|
||||
fig.update_layout(
|
||||
title=f'{"Line" if tab == "line" else "One-Day Heatmap"} Tweet Frequency (Interval: {interval} minutes, EST, {len(selected_dates)} days)',
|
||||
xaxis_title='Minutes' if tab == 'one_day_heatmap' else 'Eastern Time (HH:MM)',
|
||||
yaxis_title='Hour of Day' if tab == 'one_day_heatmap' else 'Tweet Count',
|
||||
xaxis=dict(
|
||||
range=[0, 1440] if tab == 'line' else None,
|
||||
tickvals=xticks if tab == 'line' else None,
|
||||
ticktext=xtick_labels if tab == 'line' else None,
|
||||
tickangle=45 if tab == 'line' else 0
|
||||
),
|
||||
title=f'One-Day Heatmap Tweet Frequency (Interval: {interval} minutes, EST, {len(selected_dates)} days)',
|
||||
xaxis_title='Minutes',
|
||||
yaxis_title='Hour of Day',
|
||||
height=600,
|
||||
showlegend=(tab == 'line'),
|
||||
yaxis=dict(autorange='reversed') if tab == 'one_day_heatmap' else None
|
||||
yaxis=dict(autorange='reversed')
|
||||
)
|
||||
|
||||
summary = f"Total tweets: {get_tweets_since_last_friday()}"
|
||||
|
@ -3,12 +3,9 @@ from dash.dependencies import Input, Output
|
||||
|
||||
|
||||
@app.callback(
|
||||
[Output('date-picker-container', 'style'),
|
||||
Output('days-display-container', 'style'),
|
||||
Output('time-zone-checklist', 'style')],
|
||||
[Output('days-display-container', 'style'),
|
||||
Output('multi-interval-container', 'style')],
|
||||
[Input('tabs', 'value')]
|
||||
)
|
||||
def toggle_controls_visibility(tab):
|
||||
if tab == 'heatmap' or tab == 'one_day_heatmap':
|
||||
return {'display': 'none'}, {'display': 'block'}, {'display': 'none'}
|
||||
return {'display': 'block'}, {'display': 'none'}, {'display': 'block'}
|
||||
return {'display': 'block'},{'display': 'block'}
|
||||
|
Loading…
x
Reference in New Issue
Block a user