This commit is contained in:
NY 2025-03-06 14:53:17 +08:00
parent a0f436c98f
commit 82f69596b8
2 changed files with 56 additions and 14 deletions

View File

@ -1,7 +1,8 @@
import pytz
from pkg.tool import get_tweets_since_last_friday
from pkg.dash.app_init import app
from dash.dependencies import Input, Output
from datetime import timedelta
import pytz
from datetime import datetime
from dash import html
@ -10,18 +11,36 @@ from dash import html
[Input('clock-interval', 'n_intervals')]
)
def update_info(n):
table = html.Table([
html.Tr([html.Td('Pace(Xtracker)', style={'textAlign': 'center'}),
html.Td(calculate_tweet_pace(),style={'textAlign': 'center'})]),
], style={
# 获取所有指标
pace = calculate_tweet_pace()
decline_rates = calculate_pace_decline_rate()
pace_increases = calculate_pace_increase_in_hour()
table_rows = [
html.Tr([html.Td('Pace (Xtracker)', style={'textAlign': 'center'}),
html.Td(pace, style={'textAlign': 'center'})]),
html.Tr([html.Td('-Minute', style={'textAlign': 'center'}),
html.Td(decline_rates['decline_per_minute'], style={'textAlign': 'center'})]),
html.Tr([html.Td('+0(1h)', style={'textAlign': 'center'}),
html.Td(decline_rates['decline_per_hour'], style={'textAlign': 'center'})]),
html.Tr([html.Td('+1(1h)', style={'textAlign': 'center'}),
html.Td(pace_increases['increase_1'], style={'textAlign': 'center'})]),
html.Tr([html.Td('+5(1h)', style={'textAlign': 'center'}),
html.Td(pace_increases['increase_5'], style={'textAlign': 'center'})]),
html.Tr([html.Td('+10(1h)', style={'textAlign': 'center'}),
html.Td(pace_increases['increase_10'], style={'textAlign': 'center'})]),
html.Tr([html.Td('+20(1h)', style={'textAlign': 'center'}),
html.Td(pace_increases['increase_20'], style={'textAlign': 'center'})]),
html.Tr([html.Td('+30(1h)', style={'textAlign': 'center'}),
html.Td(pace_increases['increase_30'], style={'textAlign': 'center'})]),
]
table = html.Table(table_rows, style={
'width': '100%',
'textAlign': 'left',
'borderCollapse': 'collapse'
})
return [table]
def calculate_tweet_pace():
def get_pace_params():
est = pytz.timezone('US/Eastern')
now = datetime.now(est)
today = now.date()
@ -33,6 +52,34 @@ def calculate_tweet_pace():
if now > next_friday:
next_friday += timedelta(days=7)
days_to_next_friday = (next_friday - now).total_seconds() / (24 * 60 * 60)
tweet_count = 440
tweet_count = get_tweets_since_last_friday()
return tweet_count, days_to_next_friday
def calculate_tweet_pace():
tweet_count, days_to_next_friday = get_pace_params()
pace = (tweet_count / (7 - days_to_next_friday)) * days_to_next_friday + tweet_count
return round(pace, 6) if pace > 0 else float(tweet_count)
def calculate_pace_decline_rate():
tweet_count, days_to_next_friday = get_pace_params()
T = 7
decline_per_day = -(tweet_count * T) / ((T - days_to_next_friday) ** 2)
decline_per_hour = decline_per_day / 24
decline_per_minute = decline_per_hour / 60
return {
'decline_per_hour': round(decline_per_hour, 6),
'decline_per_minute': round(decline_per_minute, 6)
}
def calculate_pace_increase_in_hour():
tweet_count, days_to_next_friday = get_pace_params()
current_pace = (tweet_count / (7 - days_to_next_friday)) * days_to_next_friday + tweet_count
future_days = days_to_next_friday - (1 / 24)
increments = [1, 5, 10, 20, 30]
pace_increases = {}
for increment in increments:
new_tweet_count = tweet_count + increment
new_pace = (new_tweet_count / (7 - future_days)) * future_days + new_tweet_count
pace_increase = new_pace - current_pace
pace_increases[f'increase_{increment}'] = round(pace_increase, 6)
return pace_increases

View File

@ -64,13 +64,8 @@ def get_tweets_since_last_friday():
last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time()))
if hasattr(render_data, 'global_df') and not render_data.global_df.empty:
df = render_data.global_df.copy()
print(f"NaT count in datetime_est: {df['datetime_est'].isna().sum()}")
print(f"Data datetime range: {df['datetime_est'].min()} to {df['datetime_est'].max()}")
mask = df['datetime_est'] >= last_friday_datetime
filtered_df = df[mask]
print(f"Filtered rows: {len(filtered_df)}")
print(f"Filtered datetime range: {filtered_df['datetime_est'].min()} to {filtered_df['datetime_est'].max()}")
tweet_count = len(filtered_df)
print(f"Tweet count: {tweet_count}")
return int(tweet_count)
return 0