+probability(debug&test)

This commit is contained in:
NY 2025-03-14 15:55:44 +08:00
parent 192bd42d0e
commit 8a2614b073
2 changed files with 89 additions and 74 deletions

View File

@ -247,13 +247,20 @@ def layout_config(app):
html.Tr([
html.Td("Test Time:", style={'paddingRight': '10px'}),
html.Td(
dcc.Input(
id='test-time-input',
type='text',
placeholder='HH:MM:SS (e.g., 12:00:00)',
value='12:00:00',
style={'width': '100%'}
)
html.Div([
dcc.Input(
id='test-time-input',
type='text',
placeholder='HH:MM:SS (e.g., 12:00:00)', # 增强提示
value='12:00:00',
pattern='[0-2][0-9]:[0-5][0-9]:[0-5][0-9]', # 限制格式
style={'width': '100%'}
),
html.Span(
"Enter time in HH:MM:SS format (e.g., 12:00:00)",
style={'fontSize': '12px', 'color': 'gray', 'marginTop': '5px', 'display': 'block'}
)
])
)
]),
html.Tr([
@ -267,7 +274,7 @@ def layout_config(app):
'width': '50%',
'marginTop': '10px',
'borderCollapse': 'collapse'
})
}),
], style={'marginLeft': '50px'}),
dcc.Interval(id='clock-interval', interval=1000, n_intervals=0)

View File

@ -3,6 +3,7 @@ from pkg.dash.app_init import app
from dash.dependencies import Input, Output
from dash import html
import pandas as pd
import re
from datetime import timedelta
@app.callback(
@ -16,91 +17,98 @@ def update_test_info(n_clicks, test_date, test_time):
return [html.Div("Click 'Test' to see historical probability results.")]
est = pytz.timezone('US/Eastern')
data = render_data.global_agg_df.copy()
# 调试:打印输入值
print(f"test_date: {test_date}, test_time: {test_time}")
# 检查输入是否为空
if not test_date or not test_time:
return [html.Div("Date or time input is empty. Please provide both date (YYYY-MM-DD) and time (HH:MM:SS).")]
# 验证时间格式
time_pattern = r'^(?:[01]\d|2[0-3]):[0-5]\d:[0-5]\d$' # HH:MM:SS (00:00:00 to 23:59:59)
if not re.match(time_pattern, test_time):
return [html.Div("Invalid time format. Use HH:MM:SS (e.g., 12:00:00) with hours 00-23, minutes 00-59, seconds 00-59.")]
# 重构 datetime_est处理夏令时模糊时间
data['hours'] = data['minute_of_day'] // 60
data['minutes'] = data['minute_of_day'] % 60
data['datetime_est'] = pd.to_datetime(
data['date'].astype(str) + ' ' +
data['hours'].astype(str) + ':' +
data['minutes'].astype(str) + ':00',
errors='coerce'
).dt.tz_localize(est, ambiguous='NaT')
if data['datetime_est'].isna().any():
print("Warning: Some datetime_est values are NaT due to ambiguous time handling")
# 解析测试日期和时间
try:
test_date = pd.to_datetime(test_date).date()
test_datetime = pd.to_datetime(f"{test_date} {test_time}").tz_localize(est) # 使用 est
except ValueError:
test_date = pd.to_datetime(test_date, format='%Y-%m-%d').date()
test_datetime = pd.to_datetime(f"{test_date} {test_time}", format='%Y-%m-%d %H:%M:%S').tz_localize(est, ambiguous=True)
except ValueError as e:
print(f"Error parsing date/time: {e}")
return [html.Div("Invalid date or time format. Use YYYY-MM-DD and HH:MM:SS (e.g., 12:00:00).")]
# 1. 计算到 test_datetime 的累计推文数(模拟当时的 tweet_count
data = render_data.global_agg_df.copy()
historical_data = data[data['datetime_est'] <= test_datetime]
if historical_data.empty:
return [html.Div(f"No data available up to {test_datetime}")]
tweet_count = historical_data['tweet_count'].sum()
# 计算周期开始时间(上一个周五 12:00 PM
test_date_only = test_datetime.replace(hour=0, minute=0, second=0, microsecond=0) # 只考虑日期部分
days_to_last_friday = (test_date_only.weekday() - 4) % 7 # 4 表示周五
cycle_start = test_date_only - timedelta(days=days_to_last_friday)
cycle_start = cycle_start.replace(hour=12, minute=0, second=0, microsecond=0) # 已经是 tz-aware直接调整时间
# 2. 计算实际最终推文数(到当天结束时的总数)
day_end = pd.to_datetime(f"{test_date} 23:59:59").tz_localize(est) # 使用 est
actual_data = data[(data['date'] == test_date) & (data['datetime_est'] <= day_end)]
# 确保周期结束时间(下周五 12:00 PM EDT考虑夏令时
cycle_end = cycle_start + timedelta(days=7)
if cycle_end.month == 3 and 8 <= cycle_end.day <= 14: # 粗略检查夏令时开始3月第二个星期日
cycle_end = cycle_end.tz_convert(est) # 转换为 EDT
else:
cycle_end = cycle_end.tz_convert(est) # 保持一致
# 调试:打印周期信息
print(f"Cycle Start: {cycle_start}, Cycle End: {cycle_end}")
# 过滤周期内的数据
cycle_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= test_datetime)]
if cycle_data.empty:
return [html.Div(f"No data available in cycle from {cycle_start} to {test_datetime}")]
tweet_count = cycle_data['tweet_count'].sum()
# 计算实际最终推文数(周期结束时的总数)
actual_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= cycle_end)]
if actual_data.empty:
return [html.Div(f"No data available for {test_date}")]
return [html.Div(f"No data available for cycle ending {cycle_end}")]
actual_end_count = actual_data['tweet_count'].sum()
# 3. 模拟 days_to_next_friday从 test_datetime 到下周五)
days_to_next_friday = (4 - test_date.weekday()) % 7
next_friday = (test_datetime.replace(hour=12, minute=0, second=0, microsecond=0) +
timedelta(days=days_to_next_friday))
if test_datetime > next_friday:
next_friday += timedelta(days=7)
days_to_next_friday = (next_friday - test_datetime).total_seconds() / (24 * 60 * 60)
# 计算 days_to_next_friday从 test_datetime 到周期结束)
days_to_next_friday = (cycle_end - test_datetime).total_seconds() / (24 * 60 * 60)
# 4. 设置预测范围(基于实际最终推文数的 ±10%
prob_start = actual_end_count * 0.9 # 90% of actual
prob_end = actual_end_count * 1.1 # 110% of actual
# 设置预测范围
prob_start = actual_end_count * 0.9
prob_end = actual_end_count * 1.1
# 5. 调用原始的 calculate_tweet_probability() 计算概率
# 计算概率
probability = calculate_tweet_probability(tweet_count, days_to_next_friday, prob_start, prob_end)
prob_min, prob_max = map(float, probability.split(" - "))
formatted_probability = f"{prob_min * 100:.2f}% - {prob_max * 100:.2f}%"
# 6. 构建测试结果表格
# 构建测试结果表格
test_table_rows = [
html.Tr([
html.Th("Test Date and Time:", colSpan=2, style={'paddingRight': '10px'}),
html.Td(str(test_datetime), colSpan=6, style={'paddingRight': '10px'})
]),
html.Tr([
html.Th("Tweet Count at Test Time:", colSpan=2, style={'paddingRight': '10px'}),
html.Td(str(tweet_count), colSpan=6, style={'paddingRight': '10px'})
]),
html.Tr([
html.Th("Actual Final Tweet Count:", colSpan=2, style={'paddingRight': '10px'}),
html.Td(str(actual_end_count), colSpan=6, style={'paddingRight': '10px'})
]),
html.Tr([
html.Th(f"Predicted Range ({int(prob_start)}-{int(prob_end)}):", colSpan=2, style={'paddingRight': '10px'}),
html.Td(formatted_probability, colSpan=6, style={'paddingRight': '10px'})
]),
html.Tr([
html.Th("Does Actual Fall in Range?", colSpan=2, style={'paddingRight': '10px'}),
html.Td(
"Yes" if prob_start <= actual_end_count <= prob_end else "No",
colSpan=6,
style={'paddingRight': '10px', 'color': 'green' if prob_start <= actual_end_count <= prob_end else 'red'}
)
])
html.Tr([html.Th("Test Date and Time:", colSpan=2), html.Td(str(test_datetime), colSpan=6)]),
html.Tr([html.Th("Tweet Count at Test Time:", colSpan=2), html.Td(str(tweet_count), colSpan=6)]),
html.Tr([html.Th("Actual Final Tweet Count:", colSpan=2), html.Td(str(actual_end_count), colSpan=6)]),
html.Tr([html.Th(f"Predicted Range ({int(prob_start)}-{int(prob_end)}):", colSpan=2), html.Td(formatted_probability, colSpan=6)]),
html.Tr([html.Th("Does Actual Fall in Range?", colSpan=2),
html.Td("Yes" if prob_start <= actual_end_count <= prob_end else "No",
colSpan=6, style={'color': 'green' if prob_start <= actual_end_count <= prob_end else 'red'})])
]
if prob_start <= actual_end_count <= prob_end:
expected_prob = (prob_max + prob_min) / 2
test_table_rows.append(
html.Tr([
html.Th("Expected Probability:", colSpan=2, style={'paddingRight': '10px'}),
html.Td(f"~{expected_prob * 100:.2f}% (should be high if model fits)", colSpan=6, style={'paddingRight': '10px'})
])
)
test_table_rows.append(html.Tr([html.Th("Expected Probability:", colSpan=2),
html.Td(f"~{expected_prob * 100:.2f}% (should be high if model fits)", colSpan=6)]))
else:
test_table_rows.append(
html.Tr([
html.Th("Note:", colSpan=2, style={'paddingRight': '10px'}),
html.Td("Model prediction does not match actual outcome.", colSpan=6, style={'paddingRight': '10px', 'color': 'red'})
])
)
test_table_rows.append(html.Tr([html.Th("Note:", colSpan=2),
html.Td("Model prediction does not match actual outcome.", colSpan=6, style={'color': 'red'})]))
test_table = html.Table(test_table_rows, style={
'width': '100%',
'textAlign': 'left',
'borderCollapse': 'collapse'
})
test_table = html.Table(test_table_rows, style={'width': '100%', 'textAlign': 'left', 'borderCollapse': 'collapse'})
return [test_table]