import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from dash import Dash, dcc, html, Input, Output
from sqlalchemy import create_engine
from datetime import datetime
# 数据库连接配置
DB_CONFIG = {
'host': '8.155.23.172',
'port': 3306,
'user': 'root2',
'password': 'tG0f6PVYh18le41BCb',
'database': 'elonX'
}
TABLE_NAME = 'poly_after2024'
db_uri = f"mysql+pymysql://{DB_CONFIG['user']}:{DB_CONFIG['password']}@{DB_CONFIG['host']}:{DB_CONFIG['port']}/{DB_CONFIG['database']}"
engine = create_engine(db_uri)
# 第一步:提取用户的交易记录(从2024-01-01开始)
user_query = """
select IF(maker_asset_id = 0, 'buy', 'sell') as sellorbuy,
maker_amount_filled/1000000 as maker_amount,
taker_amount_filled/1000000 as taker_amount,
maker_asset_id, taker_asset_id,
timestamp, IF(maker_asset_id = 0, taker_asset_id, maker_asset_id) as assetid
from poly_after2024
where maker = '0x7c3db723f1d4d8cb9c550095203b686cb11e5c6b' and timestamp >= 1704085200
union all
select IF(taker_asset_id = 0, 'buy', 'sell') as sellorbuy,
taker_amount_filled/1000000 as maker_amount,
maker_amount_filled/1000000 as taker_amount,
maker_asset_id, taker_asset_id,
timestamp, IF(maker_asset_id = 0, taker_asset_id, maker_asset_id) as assetid
from poly_after2024
where taker = '0x7c3db723f1d4d8cb9c550095203b686cb11e5c6b' and timestamp >= 1704085200
"""
user_df = pd.read_sql_query(user_query, engine)
# 第二步:提取涉及的assetid的交易记录,计算价格
asset_ids = user_df['assetid'].unique()
asset_query = f"""
select timestamp, maker_amount_filled/1000000 as maker_amount, taker_amount_filled/1000000 as taker_amount,
maker_asset_id, taker_asset_id,
IF(maker_asset_id = 0, taker_asset_id, maker_asset_id) as assetid
from poly_after2024
where (IF(maker_asset_id = 0, taker_asset_id, maker_asset_id) in ({','.join([f"'{x}'" for x in asset_ids])}))
and timestamp >= 1704085200
"""
asset_df = pd.read_sql_query(asset_query, engine)
# 计算价格:金额/数量
asset_df['price'] = 0.0
for idx, row in asset_df.iterrows():
if row['maker_asset_id'] == '0':
asset_df.at[idx, 'price'] = row['maker_amount'] / row['taker_amount']
else:
asset_df.at[idx, 'price'] = row['taker_amount'] / row['maker_amount']
asset_df['date'] = pd.to_datetime(asset_df['timestamp'], unit='s').dt.date
daily_prices = asset_df.groupby(['date', 'assetid'])['price'].mean().reset_index()
# 第三步:计算用户持仓
user_df['date'] = pd.to_datetime(user_df['timestamp'], unit='s').dt.date
holdings = {} # 记录持仓:{assetid: 数量}
daily_holdings = [] # 按天记录持仓和市值
dates = pd.date_range(start='2024-01-01', end='2025-05-22', freq='D')
for date in dates:
date = date.date()
day_trades = user_df[user_df['date'] <= date]
# 更新持仓
for idx, trade in day_trades.iterrows():
assetid = trade['assetid']
amount = trade['maker_amount'] if trade['sellorbuy'] == 'buy' else -trade['maker_amount']
holdings[assetid] = holdings.get(assetid, 0) + amount
if holdings[assetid] <= 0: # 持仓为0,移除
del holdings[assetid]
# 计算市值
total_value = 0
asset_values = {}
for assetid, amount in holdings.items():
price_data = daily_prices[(daily_prices['assetid'] == assetid) & (daily_prices['date'] <= date)]
if not price_data.empty:
latest_price = price_data.sort_values('date', ascending=False).iloc[0]['price']
value = amount * latest_price
total_value += value
asset_values[assetid] = value
daily_holdings.append({'date': date, 'total_value': total_value, 'asset_values': asset_values})
# 转换为DataFrame
daily_holdings_df = pd.DataFrame(daily_holdings)
# 第四步:饼图数据(默认显示整个时间段的市场占比)
market_share = user_df.groupby('assetid').apply(
lambda x: x[x['sellorbuy'] == 'buy']['taker_amount'].sum()
).reset_index(name='amount')
total_amount = market_share['amount'].sum()
# 第五步:初始化Dash应用
app = Dash(__name__)
# 初始图表
fig = make_subplots(rows=1, cols=2, specs=[[{"type": "pie"}, {"type": "scatter"}]], subplot_titles=("市场占比", "资产价值随时间变化"))
# 饼图(初始)
fig.add_trace(
go.Pie(
labels=market_share['assetid'],
values=market_share['amount'],
hoverinfo='label+value',
textinfo='percent',
texttemplate='%{percent:.2%}',
marker=dict(colors=['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c']),
showlegend=False
),
row=1, col=1
)
# 折线图
fig.add_trace(
go.Scatter(
x=daily_holdings_df['date'],
y=daily_holdings_df['total_value'],
mode='lines+markers',
name='资产价值',
customdata=daily_holdings_df['asset_values'],
hovertemplate='日期: %{x}
总资产: %{y:.2f}'
),
row=1, col=2
)
# 布局
fig.update_layout(
title_text="交易员 0x7c3db723f1d4d8cb9c550095203b686cb11e5c6b 资产分析",
showlegend=False,
height=500,
width=1000
)
# 饼图中心显示总金额
fig.add_annotation(
text=f"${total_amount:,.2f}
总计",
x=0.18, y=0.5,
showarrow=False,
font=dict(size=16)
)
# Dash布局
app.layout = html.Div([
dcc.Graph(id='main-graph', figure=fig),
dcc.Store(id='holdings-data', data=daily_holdings_df.to_dict('records')) # 存储持仓数据
])
# 回调:当鼠标悬停在折线图上时,更新饼图
@app.callback(
Output('main-graph', 'figure'),
Input('main-graph', 'hoverData'),
Input('holdings-data', 'data')
)
def update_pie_chart(hoverData, holdings_data):
# 恢复初始图表
fig = make_subplots(rows=1, cols=2, specs=[[{"type": "pie"}, {"type": "scatter"}]], subplot_titles=("市场占比", "资产价值随时间变化"))
holdings_df = pd.DataFrame(holdings_data)
# 折线图保持不变
fig.add_trace(
go.Scatter(
x=holdings_df['date'],
y=holdings_df['total_value'],
mode='lines+markers',
name='资产价值',
customdata=holdings_df['asset_values'],
hovertemplate='日期: %{x}
总资产: %{y:.2f}'
),
row=1, col=2
)
# 如果没有hover数据,显示默认饼图
if hoverData is None:
fig.add_trace(
go.Pie(
labels=market_share['assetid'],
values=market_share['amount'],
hoverinfo='label+value',
textinfo='percent',
texttemplate='%{percent:.2%}',
marker=dict(colors=['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c']),
showlegend=False
),
row=1, col=1
)
fig.add_annotation(
text=f"${total_amount:,.2f}
总计",
x=0.18, y=0.5,
showarrow=False,
font=dict(size=16)
)
else:
# 获取悬停的日期
hover_date = hoverData['points'][0]['x']
hover_date = pd.to_datetime(hover_date).date()
# 找到该日期的持仓数据
holdings_row = holdings_df[holdings_df['date'] == hover_date]
if not holdings_row.empty:
asset_values = holdings_row.iloc[0]['asset_values']
labels = list(asset_values.keys())
values = list(asset_values.values())
total_value = sum(values)
fig.add_trace(
go.Pie(
labels=labels,
values=values,
hoverinfo='label+value',
textinfo='percent',
texttemplate='%{percent:.2%}',
marker=dict(colors=['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c']),
showlegend=False
),
row=1, col=1
)
fig.add_annotation(
text=f"${total_value:,.2f}
总计",
x=0.18, y=0.5,
showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title_text="交易员 0x7c3db723f1d4d8cb9c550095203b686cb11e5c6b 资产分析",
showlegend=False,
height=500,
width=1000
)
return fig
# 运行Dash应用
if __name__ == '__main__':
app.run_server(debug=True)