import dash from dash import dcc, html from dash.dependencies import Input, Output import plotly.graph_objs as go import pandas as pd import pytz from datetime import datetime from sqlalchemy import create_engine # 数据库连接配置 DB_CONFIG = { 'host': '8.155.23.172', 'port': 3306, 'user': 'root2', 'password': 'tG0f6PVYh18le41BCb', 'database': 'elonX' } TABLE_NAME = 'elon_tweets' # 使用SQLAlchemy创建数据库连接 db_uri = f"mysql+pymysql://{DB_CONFIG['user']}:{DB_CONFIG['password']}@{DB_CONFIG['host']}:{DB_CONFIG['port']}/{DB_CONFIG['database']}" engine = create_engine(db_uri) # 加载数据 df = pd.read_sql(f'SELECT timestamp FROM {TABLE_NAME}', con=engine) # 数据预处理(基于EST) eastern = pytz.timezone('America/New_York') # EST pacific = pytz.timezone('America/Los_Angeles') # PST central = pytz.timezone('America/Chicago') # CST df['datetime'] = pd.to_datetime(df['timestamp'], unit='s') df['datetime_est'] = df['datetime'].dt.tz_localize('UTC').dt.tz_convert(eastern) df['date'] = df['datetime_est'].dt.date df['minute_of_day'] = df['datetime_est'].dt.hour * 60 + df['datetime_est'].dt.minute agg_df = df.groupby(['date', 'minute_of_day']).size().reset_index(name='tweet_count') # 获取所有日期用于选择器 all_dates = sorted(agg_df['date'].unique()) default_dates = all_dates[-4:] # 默认显示最近4天 # 初始化Dash应用 app = dash.Dash(__name__) # 时间间隔选项 interval_options = [ {'label': '1分钟', 'value': 1}, {'label': '5分钟', 'value': 5}, {'label': '10分钟', 'value': 10}, {'label': '30分钟', 'value': 30}, {'label': '60分钟', 'value': 60} ] # Dash应用布局 app.layout = html.Div([ html.H1("Elon Musk 发帖时间分析 (EST)"), dcc.Tabs(id='tabs', value='daily-view', children=[ # 选项卡1:每日视图(折线图) dcc.Tab(label='Daily View', value='daily-view', children=[ dcc.DatePickerSingle( id='date-picker', min_date_allowed=min(all_dates), max_date_allowed=max(all_dates), initial_visible_month=max(all_dates), date=max(all_dates) ), dcc.Dropdown( id='daily-interval-picker', options=interval_options, value=10, # 默认10分钟 style={'width': '50%'} ), html.Div(id='daily-tweet-summary', style={'fontSize': 20, 'margin': '10px'}), # 单日汇总 dcc.Graph(id='daily-tweet-graph') ]), # 选项卡2:多日视图(多线折线图) dcc.Tab(label='Multi-Day View', value='multi-day-view', children=[ dcc.Checklist( id='multi-date-picker', options=[{'label': str(date), 'value': str(date)} for date in all_dates], value=[str(date) for date in default_dates], style={'height': '200px', 'overflow': 'auto'} ), dcc.Dropdown( id='multi-interval-picker', options=interval_options, value=10, # 默认10分钟 style={'width': '50%'} ), html.Div(id='multi-day-warning', style={'color': 'red'}), html.Div(id='multi-tweet-summary', style={'fontSize': 20, 'margin': '10px'}), # 多日汇总 dcc.Graph(id='multi-tweet-graph') ]) ]) ]) # 数据聚合函数,按指定时间间隔分组并填充0 def aggregate_data(data, interval): all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)}) result = [] for date in data['date'].unique(): day_data = data[data['date'] == date].copy() day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval agg = day_data.groupby('interval_group').size().reset_index(name='tweet_count') complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0}) complete_data['date'] = date result.append(complete_data) return pd.concat(result, ignore_index=True) # 生成X轴刻度(EST时间) def generate_xticks(interval): ticks = list(range(0, 1440, interval)) tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks] return ticks, tick_labels # 回调函数1:更新Daily View图表和汇总 @app.callback( [Output('daily-tweet-graph', 'figure'), Output('daily-tweet-summary', 'children')], [Input('date-picker', 'date'), Input('daily-interval-picker', 'value'), Input('tabs', 'value')] ) def update_daily_graph(selected_date, interval, tab): if tab != 'daily-view': return go.Figure(), "" if isinstance(selected_date, str): selected_date = datetime.strptime(selected_date, '%Y-%m-%d').date() day_data = agg_df[agg_df['date'] == selected_date].copy() if day_data.empty: day_data = pd.DataFrame({'date': [selected_date], 'minute_of_day': [0]}) tweet_count_total = 0 else: tweet_count_total = day_data['tweet_count'].sum() agg_data = aggregate_data(day_data, interval) xticks, xtick_labels = generate_xticks(interval if interval >= 30 else 60) fig = go.Figure() fig.add_trace(go.Scatter( x=agg_data['interval_group'], y=agg_data['tweet_count'], mode='lines', name='推文数量', line=dict(color='blue') )) # 计算凌晨2点位置(基于EST) eastern_2am = eastern.localize(datetime.combine(selected_date, datetime.time(2, 0))) pacific_2am = pacific.localize(datetime.combine(selected_date, datetime.time(2, 0))).astimezone(eastern) central_2am = central.localize(datetime.combine(selected_date, datetime.time(2, 0))).astimezone(eastern) eastern_2am_minute = eastern_2am.hour * 60 + eastern_2am.minute # 120分钟 pacific_2am_minute = pacific_2am.hour * 60 + pacific_2am.minute # 300分钟 (5:00 EST) central_2am_minute = central_2am.hour * 60 + central_2am.minute # 180分钟 (3:00 EST) # 添加垂直线 fig.add_vline(x=eastern_2am_minute, line_dash="dash", line_color="red", annotation_text="纽约 2AM") fig.add_vline(x=pacific_2am_minute, line_dash="dash", line_color="blue", annotation_text="加州 2AM") fig.add_vline(x=central_2am_minute, line_dash="dash", line_color="green", annotation_text="新奥尔良 2AM") fig.update_layout( title=f'{selected_date} 的推文频率(间隔 {interval} 分钟,EST)', xaxis_title='东部时间 (HH:MM)', yaxis_title='推文数量', xaxis=dict(range=[0, 1440], tickvals=xticks, ticktext=xtick_labels, tickangle=45), height=600 ) summary = f"单日推文总数: {int(tweet_count_total)}" return fig, summary # 回调函数2:更新Multi-Day View图表、警告信息和汇总 @app.callback( [Output('multi-tweet-graph', 'figure'), Output('multi-day-warning', 'children'), Output('multi-tweet-summary', 'children')], [Input('multi-date-picker', 'value'), Input('multi-interval-picker', 'value'), Input('tabs', 'value')] ) def update_multi_graph(selected_dates, interval, tab): if tab != 'multi-day-view': return go.Figure(), "", "" if len(selected_dates) > 10: selected_dates = selected_dates[:10] warning = "最多只能选择10天,已自动截取前10天。" else: warning = "" selected_dates = [datetime.strptime(date, '%Y-%m-%d').date() for date in selected_dates] multi_data = agg_df[agg_df['date'].isin(selected_dates)].copy() if multi_data.empty: multi_data = pd.DataFrame({'date': selected_dates, 'minute_of_day': [0] * len(selected_dates)}) tweet_count_total = 0 else: tweet_count_total = multi_data['tweet_count'].sum() agg_data = aggregate_data(multi_data, interval) xticks, xtick_labels = generate_xticks(interval if interval >= 30 else 60) fig = go.Figure() for i, date in enumerate(selected_dates): day_data = agg_data[agg_data['date'] == date] fig.add_trace(go.Scatter( x=day_data['interval_group'], y=day_data['tweet_count'], mode='lines', name=str(date), visible=True if i < 4 else 'legendonly' )) fig.update_layout( title=f'多日推文频率对比(间隔 {interval} 分钟,EST)', xaxis_title='东部时间 (HH:MM)', yaxis_title='推文数量', xaxis=dict(range=[0, 1440], tickvals=xticks, ticktext=xtick_labels, tickangle=45), height=600, showlegend=True ) summary = f"所选日期推文总数: {int(tweet_count_total)}" return fig, warning, summary # 运行应用 if __name__ == '__main__': app.run_server(debug=True)