from datetime import datetime, timedelta import pandas as pd from pkg.config import render_data import pytz def aggregate_data(data, interval): all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)}) result = [] if data.empty or 'date' not in data.columns: complete_data = all_minutes.copy() complete_data['tweet_count'] = 0 complete_data['date'] = datetime.now().date() return complete_data for date in data['date'].unique(): day_data = data[data['date'] == date].copy() day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval agg = day_data.groupby('interval_group').size().reset_index(name='tweet_count') complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0}) complete_data['date'] = date result.append(complete_data) if not result: complete_data = all_minutes.copy() complete_data['tweet_count'] = 0 complete_data['date'] = data['date'].iloc[0] if not data.empty else datetime.now().date() return complete_data return pd.concat(result, ignore_index=True) def generate_xticks(interval): if interval <= 5: tick_step = 60 elif interval <= 10: tick_step = 60 elif interval <= 30: tick_step = 120 else: tick_step = 240 ticks = list(range(0, 1440, tick_step)) tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks] return ticks, tick_labels def minutes_to_time(minutes): hours = minutes // 60 mins = minutes % 60 return f"{hours:02d}:{mins:02d}" def get_tweets_since_last_friday(): est = pytz.timezone('US/Eastern') now_est = datetime.now(est) today = now_est.date() days_since_last_friday = (today.weekday() - 4) % 7 last_friday = today - timedelta(days=days_since_last_friday) last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time())) this_friday = today - timedelta(days=(today.weekday() - 4) % 7) this_friday_datetime = est.localize(datetime.combine(this_friday, datetime.strptime("12:00", "%H:%M").time())) if now_est < this_friday_datetime and today.weekday() != 4: last_friday -= timedelta(days=7) last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time())) if hasattr(render_data, 'global_df') and not render_data.global_df.empty: df = render_data.global_df.copy() mask = df['datetime_est'] >= last_friday_datetime filtered_df = df[mask] tweet_count = len(filtered_df) return int(tweet_count) return 0