from datetime import datetime, timedelta import pandas as pd from pkg.config import render_data import pytz def aggregate_data(data, interval): all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)}) result = [] if data.empty or 'date' not in data.columns: complete_data = all_minutes.copy() complete_data['tweet_count'] = 0 complete_data['date'] = datetime.now().date() return complete_data for date in data['date'].unique(): day_data = data[data['date'] == date].copy() day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval agg = day_data.groupby('interval_group')['tweet_count'].sum().reset_index(name='tweet_count') complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0}) complete_data['date'] = date result.append(complete_data) if not result: complete_data = all_minutes.copy() complete_data['tweet_count'] = 0 complete_data['date'] = data['date'].iloc[0] if not data.empty else datetime.now().date() return complete_data return pd.concat(result, ignore_index=True) def generate_xticks(interval): if interval <= 5: tick_step = 60 elif interval <= 10: tick_step = 60 elif interval <= 30: tick_step = 120 else: tick_step = 240 ticks = list(range(0, 1440, tick_step)) tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks] return ticks, tick_labels def minutes_to_time(minutes): hours = minutes // 60 mins = minutes % 60 return f"{hours:02d}:{mins:02d}" def get_tweets_since_last_friday(): est = pytz.timezone('US/Eastern') now_est = datetime.now(est) today = now_est.date() days_since_friday = (today.weekday() - 4) % 7 this_friday = today - timedelta(days=days_since_friday) this_friday_datetime = est.localize(datetime.combine(this_friday, datetime.strptime("12:00", "%H:%M").time())) last_friday = this_friday - timedelta(days=7) last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time())) if now_est < this_friday_datetime: start_datetime = last_friday_datetime else: start_datetime = this_friday_datetime if hasattr(render_data, 'global_df') and not render_data.global_df.empty: df = render_data.global_df.copy() mask = df['datetime_est'] >= start_datetime filtered_df = df[mask] tweet_count = len(filtered_df) return int(tweet_count) return 0 def get_time_since_last_tweet(): est = pytz.timezone('US/Eastern') now_est = datetime.now(est) if (not hasattr(render_data, 'global_df') or render_data.global_df is None or render_data.global_df.empty): return 0.0 df = render_data.global_df if 'datetime_est' not in df.columns: return 0.0 latest_tweet_time = df['datetime_est'].max() time_diff = now_est - latest_tweet_time days_diff = time_diff.total_seconds() / (24 * 60 * 60) return days_diff def format_time_str(days_to_next_friday): total_seconds = days_to_next_friday * 24 * 60 * 60 days = int(total_seconds // (24 * 60 * 60)) hours = int((total_seconds % (24 * 60 * 60)) // (60 * 60)) minutes = int((total_seconds % (60 * 60)) // 60) seconds = int(total_seconds % 60) total_hours = round(days_to_next_friday * 24, 2) return f"{days}d {hours:02d}h {minutes:02d}m {seconds:02d}s ({total_hours}h)" def get_pace_and_total_tweets(target_time: datetime) -> tuple[float, int]: est = pytz.timezone('US/Eastern') # 如果 target_time 没有时区信息,假设为 EST if target_time.tzinfo is None: target_time = est.localize(target_time) # 计算上周五 12:00 AM EST target_date = target_time.date() days_since_last_friday = (target_date.weekday() + 3) % 7 # 距离上周五的天数 last_friday = target_time - timedelta(days=days_since_last_friday) last_friday_midnight = last_friday.replace(hour=0, minute=0, second=0, microsecond=0) # 计算下周五 12:00 AM EST days_to_next_friday = (4 - target_date.weekday()) % 7 next_friday = target_time + timedelta(days=days_to_next_friday) next_friday_midnight = next_friday.replace(hour=0, minute=0, second=0, microsecond=0) if target_time > next_friday_midnight: next_friday_midnight += timedelta(days=7) # 从 global_agg_df 中筛选从上周五 12:00 AM 到 target_time 的数据 if hasattr(render_data, 'global_agg_df') and not render_data.global_agg_df.empty: multi_data_agg = render_data.global_agg_df[ (render_data.global_agg_df['date'] >= last_friday_midnight.date()) & (render_data.global_agg_df['date'] <= target_date) ].copy() else: multi_data_agg = pd.DataFrame() if multi_data_agg.empty: total_tweets = 0 else: # 使用 minute_of_day 转换为时间戳并筛选到 target_time 之前 multi_data_agg['timestamp'] = pd.to_datetime(multi_data_agg['date'].astype(str)) + \ pd.to_timedelta(multi_data_agg['minute_of_day'], unit='m') multi_data_agg['timestamp'] = multi_data_agg['timestamp'].dt.tz_localize(est) multi_data_agg = multi_data_agg[multi_data_agg['timestamp'] <= target_time] total_tweets = multi_data_agg['tweet_count'].sum() if 'tweet_count' in multi_data_agg else 0 # 计算 Pace days_elapsed = (target_time - last_friday_midnight).total_seconds() / (24 * 60 * 60) days_remaining = (next_friday_midnight - target_time).total_seconds() / (24 * 60 * 60) if days_elapsed > 0 and total_tweets > 0: daily_avg = total_tweets / days_elapsed pace = daily_avg * days_remaining + total_tweets else: pace = float(total_tweets) # 如果没有数据或时间未开始,Pace 等于当前推文数 return round(pace, 2), int(total_tweets)