elon_py/pkg/tool.py
2025-03-06 14:53:17 +08:00

71 lines
2.7 KiB
Python

from datetime import datetime, timedelta
import pandas as pd
from pkg.config import render_data
import pytz
def aggregate_data(data, interval):
all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)})
result = []
if data.empty or 'date' not in data.columns:
complete_data = all_minutes.copy()
complete_data['tweet_count'] = 0
complete_data['date'] = datetime.now().date()
return complete_data
for date in data['date'].unique():
day_data = data[data['date'] == date].copy()
day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval
agg = day_data.groupby('interval_group').size().reset_index(name='tweet_count')
complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0})
complete_data['date'] = date
result.append(complete_data)
if not result:
complete_data = all_minutes.copy()
complete_data['tweet_count'] = 0
complete_data['date'] = data['date'].iloc[0] if not data.empty else datetime.now().date()
return complete_data
return pd.concat(result, ignore_index=True)
def generate_xticks(interval):
if interval <= 5:
tick_step = 60
elif interval <= 10:
tick_step = 60
elif interval <= 30:
tick_step = 120
else:
tick_step = 240
ticks = list(range(0, 1440, tick_step))
tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks]
return ticks, tick_labels
def minutes_to_time(minutes):
hours = minutes // 60
mins = minutes % 60
return f"{hours:02d}:{mins:02d}"
def get_tweets_since_last_friday():
est = pytz.timezone('US/Eastern')
now_est = datetime.now(est)
today = now_est.date()
days_since_last_friday = (today.weekday() - 4) % 7
last_friday = today - timedelta(days=days_since_last_friday)
last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time()))
this_friday = today - timedelta(days=(today.weekday() - 4) % 7)
this_friday_datetime = est.localize(datetime.combine(this_friday, datetime.strptime("12:00", "%H:%M").time()))
if now_est < this_friday_datetime and today.weekday() != 4:
last_friday -= timedelta(days=7)
last_friday_datetime = est.localize(datetime.combine(last_friday, datetime.strptime("12:00", "%H:%M").time()))
if hasattr(render_data, 'global_df') and not render_data.global_df.empty:
df = render_data.global_df.copy()
mask = df['datetime_est'] >= last_friday_datetime
filtered_df = df[mask]
tweet_count = len(filtered_df)
return int(tweet_count)
return 0