elon_py/api/main.py
2025-02-28 12:04:33 +08:00

195 lines
7.5 KiB
Python

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.graph_objs as go
import pandas as pd
import pytz
from datetime import datetime
from sqlalchemy import create_engine
# Database connection configuration
DB_CONFIG = {
'host': '8.155.23.172',
'port': 3306,
'user': 'root2',
'password': 'tG0f6PVYh18le41BCb',
'database': 'elonX'
}
TABLE_NAME = 'elon_tweets'
# Create database connection using SQLAlchemy
db_uri = f"mysql+pymysql://{DB_CONFIG['user']}:{DB_CONFIG['password']}@{DB_CONFIG['host']}:{DB_CONFIG['port']}/{DB_CONFIG['database']}"
engine = create_engine(db_uri)
# Load data
df = pd.read_sql(f'SELECT timestamp FROM {TABLE_NAME}', con=engine)
# Data preprocessing (EST based)
eastern = pytz.timezone('America/New_York') # EST
pacific = pytz.timezone('America/Los_Angeles') # PST
central = pytz.timezone('America/Chicago') # CST (Texas)
df['datetime'] = pd.to_datetime(df['timestamp'], unit='s')
df['datetime_est'] = df['datetime'].dt.tz_localize('UTC').dt.tz_convert(eastern)
df['date'] = df['datetime_est'].dt.date
df['minute_of_day'] = df['datetime_est'].dt.hour * 60 + df['datetime_est'].dt.minute
agg_df = df.groupby(['date', 'minute_of_day']).size().reset_index(name='tweet_count')
# Get all dates for selector, sorted from latest to earliest
all_dates = sorted(agg_df['date'].unique(), reverse=True)
default_date = [str(all_dates[0])] # Default to only the most recent day
# Initialize Dash app
app = dash.Dash(__name__)
# Time interval options
interval_options = [
{'label': '1 minute', 'value': 1},
{'label': '5 minutes', 'value': 5},
{'label': '10 minutes', 'value': 10},
{'label': '30 minutes', 'value': 30},
{'label': '60 minutes', 'value': 60}
]
# Dash app layout
app.layout = html.Div([
html.H1("Elon Musk Tweet Time Analysis (EST)"),
dcc.Dropdown(
id='multi-date-picker',
options=[{'label': str(date), 'value': str(date)} for date in all_dates],
value=default_date,
multi=True,
searchable=True,
placeholder="Search and select dates (YYYY-MM-DD)",
style={'width': '100%'}
),
dcc.Dropdown(
id='multi-interval-picker',
options=interval_options,
value=10, # Default 10 minutes
style={'width': '50%', 'marginTop': '10px'}
),
html.Div(id='multi-day-warning', style={'color': 'red', 'margin': '10px'}),
dcc.Checklist(
id='time-zone-checklist',
options=[
{'label': 'California Time (PST)', 'value': 'PST'},
{'label': 'Texas Time (CST)', 'value': 'CST'}
],
value=['PST'], # Default show PST, hide CST
style={'margin': '10px'}
),
html.Div(id='multi-tweet-summary', style={'fontSize': 20, 'margin': '10px'}),
dcc.Graph(id='multi-tweet-graph'),
html.Div([
html.Div(id='est-clock', style={'fontSize': 20, 'margin': '10px'}),
html.Div(id='pst-clock', style={'fontSize': 20, 'margin': '10px'})
]),
dcc.Interval(id='clock-interval', interval=1000, n_intervals=0) # Update clocks every second
])
# Data aggregation function
def aggregate_data(data, interval):
all_minutes = pd.DataFrame({'interval_group': range(0, 1440, interval)})
result = []
for date in data['date'].unique():
day_data = data[data['date'] == date].copy()
day_data['interval_group'] = (day_data['minute_of_day'] // interval) * interval
agg = day_data.groupby('interval_group').size().reset_index(name='tweet_count')
complete_data = all_minutes.merge(agg, on='interval_group', how='left').fillna({'tweet_count': 0})
complete_data['date'] = date
result.append(complete_data)
return pd.concat(result, ignore_index=True)
# Generate X-axis ticks (EST time)
def generate_xticks(interval):
ticks = list(range(0, 1440, interval))
tick_labels = [f"{m // 60:02d}:{m % 60:02d}" for m in ticks]
return ticks, tick_labels
# Convert minutes to time string
def minutes_to_time(minutes):
hours = minutes // 60
mins = minutes % 60
return f"{hours:02d}:{mins:02d}"
# Callback for updating clocks
@app.callback(
[Output('est-clock', 'children'),
Output('pst-clock', 'children')],
[Input('clock-interval', 'n_intervals')]
)
def update_clocks(n):
now_utc = datetime.now(pytz.UTC)
est_time = now_utc.astimezone(eastern).strftime('%Y-%m-%d %H:%M:%S EST')
pst_time = now_utc.astimezone(pacific).strftime('%Y-%m-%d %H:%M:%S PST')
return f"Current EST Time: {est_time}", f"Current PST Time: {pst_time}"
# Callback for updating multi-day graph, warning, and summary
@app.callback(
[Output('multi-tweet-graph', 'figure'),
Output('multi-day-warning', 'children'),
Output('multi-tweet-summary', 'children')],
[Input('multi-date-picker', 'value'),
Input('multi-interval-picker', 'value'),
Input('time-zone-checklist', 'value')]
)
def update_multi_graph(selected_dates, interval, time_zones):
if len(selected_dates) > 10:
selected_dates = selected_dates[:10]
warning = "Maximum of 10 days can be selected. Showing first 10 selected days."
else:
warning = ""
selected_dates = [datetime.strptime(date, '%Y-%m-%d').date() for date in selected_dates]
multi_data = agg_df[agg_df['date'].isin(selected_dates)].copy()
if multi_data.empty:
multi_data = pd.DataFrame({'date': selected_dates, 'minute_of_day': [0] * len(selected_dates)})
tweet_count_total = 0
else:
tweet_count_total = multi_data['tweet_count'].sum()
agg_data = aggregate_data(multi_data, interval)
xticks, xtick_labels = generate_xticks(interval if interval >= 30 else 60)
fig = go.Figure()
for date in selected_dates:
day_data = agg_data[agg_data['date'] == date]
hover_times = [f"{date} {minutes_to_time(minute)} EST" for minute in day_data['interval_group']]
fig.add_trace(go.Scatter(
x=day_data['interval_group'],
y=day_data['tweet_count'],
mode='lines',
name=str(date),
customdata=hover_times,
hovertemplate='%{customdata}<br>Tweets: %{y}<extra></extra>'
))
# Add vertical lines for California (PST) and Texas (CST) times in EST
# PST is 3 hours behind EST, CST is 1 hour behind EST
if 'PST' in time_zones:
pacific_2am_est = (2 + 3) * 60 # 2:00 PST = 5:00 EST (300 minutes)
pacific_7am_est = (7 + 3) * 60 # 7:00 PST = 10:00 EST (600 minutes)
fig.add_vline(x=pacific_2am_est, line_dash="dash", line_color="blue", annotation_text="CA 2AM PST")
fig.add_vline(x=pacific_7am_est, line_dash="dash", line_color="blue", annotation_text="CA 7AM PST")
if 'CST' in time_zones:
central_2am_est = (2 + 1) * 60 # 2:00 CST = 3:00 EST (180 minutes)
central_7am_est = (7 + 1) * 60 # 7:00 CST = 8:00 EST (480 minutes)
fig.add_vline(x=central_2am_est, line_dash="dash", line_color="green", annotation_text="TX 2AM CST")
fig.add_vline(x=central_7am_est, line_dash="dash", line_color="green", annotation_text="TX 7AM CST")
fig.update_layout(
title=f'Multi-Day Tweet Frequency Comparison (Interval: {interval} minutes, EST)',
xaxis_title='Eastern Time (HH:MM)',
yaxis_title='Tweet Count',
xaxis=dict(range=[0, 1440], tickvals=xticks, ticktext=xtick_labels, tickangle=45),
height=600,
showlegend=True
)
summary = f"Total tweets for selected dates: {int(tweet_count_total)}"
return fig, warning, summary
# Run the app
if __name__ == '__main__':
app.run_server(debug=True)