114 lines
5.6 KiB
Python
114 lines
5.6 KiB
Python
from pkg.dash.func.info_func import *
|
||
from pkg.dash.app_init import app
|
||
from dash.dependencies import Input, Output
|
||
from dash import html
|
||
import pandas as pd
|
||
import re
|
||
from datetime import timedelta
|
||
|
||
@app.callback(
|
||
[Output('test-info-tooltip', 'children')],
|
||
[Input('test-button', 'n_clicks'),
|
||
Input('test-date-input', 'date'),
|
||
Input('test-time-input', 'value')]
|
||
)
|
||
def update_test_info(n_clicks, test_date, test_time):
|
||
if n_clicks == 0:
|
||
return [html.Div("Click 'Test' to see historical probability results.")]
|
||
|
||
est = pytz.timezone('US/Eastern')
|
||
data = render_data.global_agg_df.copy()
|
||
|
||
# 调试:打印输入值
|
||
print(f"test_date: {test_date}, test_time: {test_time}")
|
||
|
||
# 检查输入是否为空
|
||
if not test_date or not test_time:
|
||
return [html.Div("Date or time input is empty. Please provide both date (YYYY-MM-DD) and time (HH:MM:SS).")]
|
||
|
||
# 验证时间格式
|
||
time_pattern = r'^(?:[01]\d|2[0-3]):[0-5]\d:[0-5]\d$' # HH:MM:SS (00:00:00 to 23:59:59)
|
||
if not re.match(time_pattern, test_time):
|
||
return [html.Div("Invalid time format. Use HH:MM:SS (e.g., 12:00:00) with hours 00-23, minutes 00-59, seconds 00-59.")]
|
||
|
||
# 重构 datetime_est,处理夏令时模糊时间
|
||
data['hours'] = data['minute_of_day'] // 60
|
||
data['minutes'] = data['minute_of_day'] % 60
|
||
data['datetime_est'] = pd.to_datetime(
|
||
data['date'].astype(str) + ' ' +
|
||
data['hours'].astype(str) + ':' +
|
||
data['minutes'].astype(str) + ':00',
|
||
errors='coerce'
|
||
).dt.tz_localize(est, ambiguous='NaT')
|
||
|
||
if data['datetime_est'].isna().any():
|
||
print("Warning: Some datetime_est values are NaT due to ambiguous time handling")
|
||
|
||
# 解析测试日期和时间
|
||
try:
|
||
test_date = pd.to_datetime(test_date, format='%Y-%m-%d').date()
|
||
test_datetime = pd.to_datetime(f"{test_date} {test_time}", format='%Y-%m-%d %H:%M:%S').tz_localize(est, ambiguous=True)
|
||
except ValueError as e:
|
||
print(f"Error parsing date/time: {e}")
|
||
return [html.Div("Invalid date or time format. Use YYYY-MM-DD and HH:MM:SS (e.g., 12:00:00).")]
|
||
|
||
# 计算周期开始时间(上一个周五 12:00 PM)
|
||
test_date_only = test_datetime.replace(hour=0, minute=0, second=0, microsecond=0) # 只考虑日期部分
|
||
days_to_last_friday = (test_date_only.weekday() - 4) % 7 # 4 表示周五
|
||
cycle_start = test_date_only - timedelta(days=days_to_last_friday)
|
||
cycle_start = cycle_start.replace(hour=12, minute=0, second=0, microsecond=0) # 已经是 tz-aware,直接调整时间
|
||
|
||
# 确保周期结束时间(下周五 12:00 PM EDT)考虑夏令时
|
||
cycle_end = cycle_start + timedelta(days=7)
|
||
if cycle_end.month == 3 and 8 <= cycle_end.day <= 14: # 粗略检查夏令时开始(3月第二个星期日)
|
||
cycle_end = cycle_end.tz_convert(est) # 转换为 EDT
|
||
else:
|
||
cycle_end = cycle_end.tz_convert(est) # 保持一致
|
||
|
||
# 调试:打印周期信息
|
||
print(f"Cycle Start: {cycle_start}, Cycle End: {cycle_end}")
|
||
|
||
# 过滤周期内的数据
|
||
cycle_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= test_datetime)]
|
||
if cycle_data.empty:
|
||
return [html.Div(f"No data available in cycle from {cycle_start} to {test_datetime}")]
|
||
tweet_count = cycle_data['tweet_count'].sum()
|
||
|
||
# 计算实际最终推文数(周期结束时的总数)
|
||
actual_data = data[(data['datetime_est'] >= cycle_start) & (data['datetime_est'] <= cycle_end)]
|
||
if actual_data.empty:
|
||
return [html.Div(f"No data available for cycle ending {cycle_end}")]
|
||
actual_end_count = actual_data['tweet_count'].sum()
|
||
|
||
# 计算 days_to_next_friday(从 test_datetime 到周期结束)
|
||
days_to_next_friday = (cycle_end - test_datetime).total_seconds() / (24 * 60 * 60)
|
||
|
||
# 设置预测范围
|
||
prob_start = actual_end_count * 0.9
|
||
prob_end = actual_end_count * 1.1
|
||
|
||
# 计算概率
|
||
probability = calculate_tweet_probability(tweet_count, days_to_next_friday, prob_start, prob_end)
|
||
prob_min, prob_max = map(float, probability.split(" - "))
|
||
formatted_probability = f"{prob_min * 100:.2f}% - {prob_max * 100:.2f}%"
|
||
|
||
# 构建测试结果表格
|
||
test_table_rows = [
|
||
html.Tr([html.Th("Test Date and Time:", colSpan=2), html.Td(str(test_datetime), colSpan=6)]),
|
||
html.Tr([html.Th("Tweet Count at Test Time:", colSpan=2), html.Td(str(tweet_count), colSpan=6)]),
|
||
html.Tr([html.Th("Actual Final Tweet Count:", colSpan=2), html.Td(str(actual_end_count), colSpan=6)]),
|
||
html.Tr([html.Th(f"Predicted Range ({int(prob_start)}-{int(prob_end)}):", colSpan=2), html.Td(formatted_probability, colSpan=6)]),
|
||
html.Tr([html.Th("Does Actual Fall in Range?", colSpan=2),
|
||
html.Td("Yes" if prob_start <= actual_end_count <= prob_end else "No",
|
||
colSpan=6, style={'color': 'green' if prob_start <= actual_end_count <= prob_end else 'red'})])
|
||
]
|
||
if prob_start <= actual_end_count <= prob_end:
|
||
expected_prob = (prob_max + prob_min) / 2
|
||
test_table_rows.append(html.Tr([html.Th("Expected Probability:", colSpan=2),
|
||
html.Td(f"~{expected_prob * 100:.2f}% (should be high if model fits)", colSpan=6)]))
|
||
else:
|
||
test_table_rows.append(html.Tr([html.Th("Note:", colSpan=2),
|
||
html.Td("Model prediction does not match actual outcome.", colSpan=6, style={'color': 'red'})]))
|
||
|
||
test_table = html.Table(test_table_rows, style={'width': '100%', 'textAlign': 'left', 'borderCollapse': 'collapse'})
|
||
return [test_table] |